

What is Event Driven Architecture (EDA) and Why Does it Matter?

Dr. K. Mani Chandy, Simon Ramo Professor of Computer Science, California Institute of

Technology and
W. Roy Schulte, Vice President and Distinguished Analyst, Gartner Inc.
15 July, 2007

Event processing has emerged as one of the most important issues in IT today. Event
processing encompasses two separate, although related, ideas:

1. Architecture: Event-Driven Architecture (EDA) is a style of application
architecture centered on an asynchronous “push”- based communication model.
EDA is the software architecture of choice for implementing “straight through”
multistage business processes that deliver goods, services and information with
minimum delay. Applications designed using EDA are also easier to modify than
traditional applications as business requirements change.

2. Sense and Respond: The ability to respond rapidly and effectively to changing

conditions is a powerful competitive advantage. Companies can use Complex-
event Processing (CEP) techniques, a sophisticated form of EDA, to extract the
information value from multiple events. CEP systems find patterns in event data
to detect opportunities and threats. Timely alerts are then pushed to the
appropriate recipients, often using Business Activity Monitoring (BAM)
dashboards or similar end-user information delivery channels. The result is faster
and better operational decisions and more timely responses to important
situations.

Gartner has developed a new conference on event processing and BAM to be held from
September 19th through 21st, 2007 in Orlando, Florida to address both aspects of event
processing. See www.gartner.com/it/page.jsp?id=502259&tab=overview for more
information. This article is an introduction to the field of event processing to provide
background for those who will attend the conference or for anyone who wants to learn
more about the subject. The article provides an overview of why architects, software
engineers, business analysts and IT managers use EDA with one event at a time in
business applications. It describes:

• Why design patterns used in typical applications don’t enable the timely and
effective behavior that businesses want.

• What EDA is and how it works to improve the responsiveness and effectiveness
of business processes.

A second, related article (“How Event Processing Improves Business Decision Making”)
describes how CEP systems “connect the dots” and find patterns in multiple events to
implement BAM and other operational business intelligence (BI) systems.

Sensing and Responding to Events As They Occur

We live in an event-driven world. Animals, people, companies and even countries
survive and thrive based on their ability to act quickly on opportunities and threats.
Zebras on the savannah sense and respond to the opportunity of a water hole or the threat
of a lion. Boxers and armies look for opportunities to go on the offensive while watching
for signs of imminent attacks. Wall Street traders use algorithmic trading systems that act
on arbitrage opportunities in sub-second response times. Banks track credit card usage on
a near-real-time basis to stop fraudulent charges as they occur.

Opportunities and threats appear at unpredictable times. So an event-driven entity must
respond to events at times that are externally determined. They act when the world
changes and not only according to pre-planned schedules. Event-driven business
applications are initiated when a shipping company delivers goods, a customer submits a
change of address or the price of a stock goes up. These happenings are business events:
meaningful changes in the state of something relevant to the business.

All companies have always been event-driven in a real-world sense because they respond
to external events generated by customers, suppliers and competitors. Furthermore, most
companies moved their time-sensitive applications from scheduled, batch modes of
operation to on-line modes during the past forty years. So isn’t business IT already
event-driven? Unfortunately, in many cases, the answer is “no”! Companies have moved
only their simple tasks and some limited parts of their more complex processes to
responsive, event-driven modes of operation. They have yet to make the transition to a
sense-and-respond style of behavior for many of the more important and complex aspects
of their business. The work of IT during the next twenty years will be to complete the
evolution of business processes from sequences of slow-moving, disjointed applications
to more responsive end-to-end, event-based straight-through flows of action.

Why Now? What Changed?

Organizations were always event driven in a real-world sense, so why weren’t their IT
systems equally event-driven in the past and why will they become event-driven now?
There are 3 reasons why EDA matters more now:

1. Competitive pressure to deal with the increasing pace of business: In the past
companies could monitor changes in the slow-moving environment periodically –
every quarter or month – then plan an appropriate response for the remainder of
the period and finally execute the plan. Organizations now need to respond much
more quickly to rapidly changing situations. Customers expect to receive the
goods that they order sooner. They want to be able to go on the Web to look up
the current balance in their account or the up-to-the-minute status of a service
request rather than seeing data from the previous night.

2. On-line responses: More people are accessible electronically – through email,
instant messaging and phones – than ever before. Organizations can proactively
inform people as soon as critical events occur. Further, business process
management software, which is increasingly widespread, allows processes to be
triggered when critical events occur; thus integrating event processing into
businesses is easier today than a decade ago. The opportunity for sense and
respond IT applications increases as more people remain on-line for more of the
time.

3. IT capability: Hardware and software resources enable sense and respond

applications in IT today which were not possible in the past. The capacity of
computers, communication and storage continues to grow exponentially. IT now
has the capability to satisfy business needs to respond to conditions as they
change. This capability wasn’t available a decade ago.

Changing Roles of Request-Driven and Event-Driven Paradigms

Common patterns of interaction among people, people and computer systems and among
software components in a computer system fall into three broad categories:

• scheduled
• pulled
• pushed

Scheduled activities work fine when the timing of the work is predictable and fast
response to an external entity is not important. CEOs meet with their executive leadership
teams every Monday at 8 AM, or a batch job runs on the computer every night at 11 PM.
However, some jobs can’t be done according to a fixed schedule. Imagine a lion where
the visual cortex is out of touch with the part of the brain that controls the leg muscles.
The lion would see a zebra and store that fact in its memory. Then, a few hours later, the
part of the brain that controls the muscles would come alive through some internal clock
and look through memory to see if it has an opportunity to get food. The zebra has been
long gone by then. It sounds silly, but this is how many IT systems still work today. A
customer logs in via the Web or calls a contact center to order a product and the order is
captured on the spot because the order entry application is on-line. But responsiveness
may end there because the next stage in the business process, the order fulfillment
application, may be linked to the order entry system only through a batch process at the
end of the day. The response is deferred to some time that is determined by the
company’s internal clock even though there is an economic advantage to the company to
provide faster delivery to the customer.

Pull-based activities are better suited than scheduled activities for meeting immediate
needs. A CEO may call the VP of Manufacturing to ask about the status of the plan to
reduce energy consumption. Or a consumer can look up their current bank balance over
the Web. Pull interactions are implemented using a request/reply communication pattern.
IT has used request-reply patterns from the dawn of computing, starting with procedure

calls, through client-server interactions and now in many Web services and Service-
oriented Architecture (SOA) applications.

Companies moved most of their time-sensitive, externally oriented business functions
from batch (scheduled) to on-line (pull) so that they could be responsive to real world
events. On-line, pull based functions are event-driven on the surface, however they are
not using Event-driven Architecture (EDA) in their core so they can’t satisfy end users’
timeliness requirements for larger business processes or for situations in which the
requester (information consumer) does not know when to ask for fresh information. For
example, a credit card company does not expect its customers to inquire into their
account activity every hour to look for fraud. The company proactively notifies
customers when patterns of potentially fraudulent transactions have been detected. In
other words, push, rather than pull, is needed for certain kinds of tasks.

Push-based patterns are the best solution for two different, although related, aspects of
work. The first has just been described – the credit card company notifying a customer
because it has found some information of potential importance. A push application
anticipates consumer needs, proactively executes services and then sends critical
information to consumers. By contrast, pull systems are inherently reactive.

The second area where push-based relationships are important is in multistep processes.
The pull model is real-time and responsive only for a specific task executed by a single
component and the components to which it delegates subtasks (also using a request/reply
model). For example, the order-entry step in a order-to-cash process runs immediately
using a pull-based model, but the remaining steps for order fulfillment, manufacturing,
shipping and billing can’t be executed using a pull-based model in practical terms
because they are done by different application systems in different business units (maybe
even in different companies cooperating in the same virtual enterprise).

A complex business process isn’t executed in a single step. Rather, it is deconstructed
into multiple simple stages, each of which is carried out by a different component – for
example, by different people or by separate service-oriented architecture (SOA) services.
If communication between components is carried out by combinations of pull and
scheduled (batch) operations, the overall performance of the end-to-end process will be
slow. Push-based, staged EDA processes consist of a sequence of functions, each
executed by a separate software component, and each triggered by the arrival of a
message pushed by the previous component in the process (this is sometimes called
message-driven processing).

Few business problems call for EDA exclusively. Most enterprise applications should use
a mix of pull, scheduled and push communication patterns because each pattern has its
advantages. For simple tasks and for simple portions of larger processes, where an
external entity is waiting for an immediate reply to a simple request, the pull-based model
is still the right answer. For situations where there is no benefit to the customer or the
company to operate in near-real-time, the right solution is still a scheduled batch job.
However, as the pace of business accelerates and competition to provide faster and better

customer service grows, an end-to-end, sense-and-respond mode of operation is
increasingly needed, driving more work toward EDA.

Event-driven Architecture (EDA)

There is more to EDA than just the “push” based communication model. For a system to
implement EDA, it must have the particular characteristics described in this section.

Let’s first look deeper into some definitions. As we described earlier, an event is the fact
of something happening, such as a bank transaction, stock trade, customer order, address
change, shipment delivery or buying a house. Of course, computers can’t manipulate
events because they are abstractions; so an application system must create an event object
– an electronic signal or report of the event. The fact that Fred Smith withdrew $ 100
from his bank account at 10 AM today is an event. The computer record associated the
withdrawal transaction, perhaps in the form of an XML message, is the event object.
Computers can transmit and process event objects but not events. A message consisting
of an event object is called a notification. (Confusingly, some articles on event
processing refer to event objects and messages containing event objects as events. So
readers of these articles must consider the context to determine whether “event” refers to
a happening or a report of the happening.)

Event processing is defined as computing that performs operations on event objects.
Event processing includes creating, reading, deleting, transforming and responding to
event objects. An event processing system has at least two components, (1) a sensor or
source that senses events and emits event objects, and (2) a consumer or responder that
receives and responds to event objects. The act of sensing an event and generating an
event object is separate from the act of responding to the receipt of an event object. For
example, a smoke detector senses smoke in the atmosphere and generates an event object
– an electronic signal – that is sent to the sprinkler system which responds to receipt of
the event object by taking the action of turning on the sprinklers. In a degenerate case, the
source and consumer are implemented within the same program. A staged EDA
application has multiple components each of which may consume and emit event objects,
where event objects generated by one component are consumed by others.

EDA is a style of software architecture that deals with “pushing” event objects. Not all
event processing is EDA. Event objects can be manipulated in pull and scheduled modes
of operation as well as in push mode. Event objects may be stored in information
repositories for later data mining, or event objects may be packaged into remote
procedure calls (RPC). An application uses EDA only if the three following conditions
are met:

1. Event objects are pushed.

Event objects are sent from an event source to the event consumer in
asynchronous messages at times determined by the event source. Pushing event
objects proactively reduces latency (the time required to respond to an event),

compared to waiting for consumers to pull event objects (for example, by
repeatedly asking if any new data is available (polling)). The latency of a pull-
based system increases as the time between polling requests increases, but
frequent polling may be impractical because of its overhead.

2. Components process events on arrival.

An event consumer responds as soon as it gets an event object. An end-to-end
process can respond in a timely manner only if each stage of the process executes
when it receives an event object rather than waiting for a scheduled time. Of
course, during periods of high load, event objects may arrive faster than they can
be processed; in such cases an event object is processed as soon as possible.

3. Event objects do not specify operations.

An event object does not specify the operation that a consumer of the object must
perform upon receiving the objects. This decreases the logical coupling between
sources and consumers of event objects. The source simply sends a message
reporting that an event has happened. The logic to decide what to do about the
event is embodied in the consumer (or consumers). Therefore developers have the
flexibility of changing or adding event consumers without modifying sources. By
contrast, remote procedure call (RPC) mechanisms and most request/reply SOA
services include a method name on which the service requestor and service
provider must agree; so both requestor and provider must be changed in lock step.
The enhanced “plug-ability” of EDA systems is a key advantage over common
request/reply systems.

There are many types of event processing applications. A stage in a simple EDA process
executes a business function each time it receives one single event object. Each event
object is handled largely independently of other event objects. By contrast, CEP
applications operate on multiple event objects at the same time (this important topic is
explored in the related article mentioned earlier, “How Event Processing Improves
Business Decision Making.”)

Middleware for EDA

Staged EDA applications can be implemented using different types of middleware
including message-oriented middleware (MOM) or one-way document-style SOAP
messages. MOM functionality, in particular, provides features helpful for improving the
integrity and efficiency of EDA processes. Sources and consumers of information are
decoupled in time through the use of message queuing – a source can send an event
object and terminate at any time because the MOM can store the object until the
consumer is ready to receive it. MOM middleware can store messages to disk, guarantee
exactly-once delivery to a consumer, balance load, handle failures, provide security and
implement publish-and-subscribe (pub/sub) communication patterns.

EDA does not require the use of MOM or pub/sub, although they are often useful.
Conversely, an application that uses MOM or pub/sub is not necessarily implementing
the EDA architectural style. Pub/sub is also used to distribute data other than event
objects – music for example. EDA is not the same as MOM or pub/sub.

Conclusion

EDA is under-utilized because application architects, software engineers and business
analysts sometimes fall back on the familiar pull and scheduled models as a matter of
habit. Moreover, some software developers, even some well educated ones, haven’t used
MOM so they find it easier to resort to writing out files or building database tables. This
often results in business processes that are slower and less responsive than they should
be.

Businesses need to be able to sense-and-respond more effectively to remain competitive,
so they need to make more of their complex processes event-driven and straight-through.
The push concept and the desirability of running some business processes straight-
through are not difficult to grasp and they are being used more frequently every year as
business pressures grow and as application developers get more comfortable with using
them. Some parts of all new SOA and other business systems should use EDA, while
other parts should still use pull and scheduled patterns. The key is to understand the
advantages of each and how to employ them.

At the Gartner Event Processing and BAM conference in September 19-21, 2007, we will
explore the best practices and software tools associated with EDA at length. The
conference has a special emphasis on case studies, about half of which are dedicated to
Capital Markets and Banking because of the wide use of event processing in those
industries. Thirteen case study speakers will participate, along with three experts from
academia and a number of Gartner analysts. We will also be joined by sixteen vendors of
event processing products who will demonstrate the range of capabilities available on the
market today. See www.gartner.com/it/page.jsp?id=502259&tab=overview for more
information.

This article has focused on one aspect of EDA exploitation but there is another related
aspect that is equally important: the use of CEP to enhance the quality and timeliness of
operational business decisions. One of the indirect, but significant benefits of using
simple, event-at-a-time EDA in push-based business processes, as described in this
article, is that it provides a foundation for using business events for CEP purposes. That
topic is covered in a related article, “How Event Processing Improves Business Decision
Making.”

